146-200/300 Jetliner

OPERATIONS MANUAL

Please note that Flight Simulator X must be installed correctly on your PC prior to installation and use of 146-200/300 Jetliner.

CONTENTS

INTRODUCTION..2
INSTALLATION ...6
PANELS ...9
 Main panels ...9
 Overhead panel ..12
 Pedestal ...22
 Glareshield ..25
 Panel Selector Icons ..27
 Autopilot ..28
Panel configurations ..30
 Auto start ...30
 Doors and Ground Power Unit ..30
FMC ..32
MODEL CONFIGURATIONS ..47
WEATHER RADAR INTEGRATION ...48
FAQs ...54
TUTORIAL – FLYING THE 146-200 ...56
CHECKLISTS ..79
CREDITS ...83
COPYRIGHTS ...83
SOFTWARE PIRACY ..84
INTRODUCTION

The prototype of the BAe 146 short haul jet airliner first flew in 1981. While the standard 146-100 has 93 passenger seats, the aircraft modelled in this simulation – the 146-200 – has 109 seats in a longer fuselage. Some 115 146-200 aircraft were built and in 1990 the line was relaunched as the Avro RJ series.

The 146 series of aircraft are renowned for their relatively quiet operation, which proved ideal for coping with the stringent noise limits around city centre airports. The 146 is widely used by European airlines and can be used on flights to London City airport with its short runway and steep approach.

The 146 has a royal connection, being the first jet aircraft to be operated by the British Queen’s Flight, later to become 32 (The Royal) Squadron. Needless to say, the Queen’s aircraft were fitted out with luxury interiors, and operated with a capacity of 19 passengers and a crew of six.

This package also includes the 146-300 model. Developed in the late 1980s, the 146-300 is a stretched derivative of the 146-200 designed for airlines that required greater passenger capacity. The 146-300 has an extended fuselage (2.44m longer than on the 146-200) providing space for a further 15 passenger seats.

We hope you’ll enjoy this 146-200/300 package – we’ve included a tutorial flight from Brussels to Manchester to help you get the most from this amazing aircraft.

This add-on includes an F-Lite style FMC (Flight Management Computer) which can be installed into both the 146-200 and the 146-300.

The real 146-200/300 was not fitted with a FMC as it left the factory but we thought that you might like the added versatility of flying with an FMC. If you prefer to keep things simple, you can still fly the 146-200 and 146-300 without it!
Liveries

146-200 (30)
- BAe 146 Demonstrator
- Blue1
- British Airways
- Brussels Airlines
- Crossair
- Eurowings
- Lufthansa Regional CityLine
- Swiss - Star Alliance
- American Airlines
- Air Nova
- Continental Express
- NWA Airlink (newer livery)
- United Express
- US Air (Older livery)
- Air Brasil
- Qantaslink
- Atlantic Airways
- Conti-Flug
- Crossair (livery B)
- Romavia
- SAS
- SwissAir Express
- Virgin
- Air Cal
- Air Wisconsin
- Delta Connection
- NWA
- United Express (older livery)
- US Air (newer livery)
- Star Peru
- (Overall white livery)

146-300 (9)
- British Airways (Landor)
- Eurowings
- Flybe
- China Eastern
- Astra Airlines
- Aer Lingus
- Swiss Star Alliance
- Jet2 (white)
- Astra Airlines
146-200 Jetliner aircraft specifications

Dimensions
- Length: 28.60m
- Wingspan: 26.21m
- Height (to top of fin): 8.59m
- Wing area: 77.30m²

Powerplants
- Type: 4 x Textron Lycoming ALF 502R-5 turbofans
- Static thrust: 6,970 lbs per engine

Weights
- Maximum take-off: 42,184 kg
- Maximum landing weight: 36,745 kg
- Empty weight: 23,897 kg

Performance
- VMO: 350 knots / 0.72 Mach
- Service ceiling: 31,000 ft
- Range (max. payload): 1,200 nautical miles
- Crew: Usually two plus cabin staff
- Passengers: 109 seat capacity
INSTALLATION

Please note: Flight Simulator X must be correctly installed on your PC prior to the installation and use of this software.

Installing the DVD-ROM software

1. Close all open programs and applications prior to installation. Place the DVD-ROM in your DVD drive.
2. If your computer has ‘Autorun’ enabled, the installation program will start. If not, select ‘Start’ on the Windows taskbar, click on ‘Run…’ and type D:\start.exe in the ‘Open’ window (where ‘D’ is the drive letter of your DVD-ROM drive), then press ‘OK’.
3. The first screen to appear will ask you to ‘Install in FSX’. Follow the on-screen instructions.
4. If the installer is unable to find a valid entry for the selected simulator a warning dialogue will appear telling you to browse manually to the folder where you have installed Flight Simulator X.
5. The default path for Flight Simulator X is C:\program files\Microsoft Games\Microsoft Flight Simulator X. This path will be correct unless you specified another location when you installed Flight Simulator.

Once the installation is complete you will see a confirmation window. Click the ‘Finish’ button to exit the install program and return to Windows. The installation is complete.

DVD-ROM installation FAQs

After inserting the disc I get told to insert the correct disc even though I have already inserted it, or an error appears warning that CD/DVD emulation software has been detected.

This problem occurs because the SafeDisc protection software on the disc is failing to validate. The most common reasons for this are:

- You have anti-virus software or a firewall active on your PC that is interfering with the installation. Please disable all programs running in the background of Windows and try installing again.

 Important: If you have an nVidia nForce 2 motherboard please ensure that you visit nvidia.com and install the latest driver as older versions are known to have compatibility problems with SafeDisc.

- The disc may have been damaged and become unreadable. Please check for any damage to the disc and give the readable surface a clean.

- The drive that you are using to load the software may be incompatible with SafeDisc. Please visit the manufacturer’s website to download any updated drivers/firmware that may be available or alternatively try installing using an alternative drive (if you’ve got one).
If you have any Virtual Drive or Emulation software on your PC then this can prevent the SafeDisc protection software from validating. In order to install the software you must disable the emulator from trying to circumvent SafeDisc. Typical emulation software includes Daemon Tools, Clone CD and Alcohol 120%.

If Alcohol 120% is on the machine:
Start Alcohol 120% and go to the Emulation Options.
Select ‘Emulation’ from the options tree. Uncheck the ‘Ignore Media Types’ box to turn off the media type emulation.
Select ‘Extra Emulation’ from the options tree. Uncheck the ‘BAD Sectors Emulation’ to turn off this type of emulation, exit Alcohol 120% and restart the installation.

If CloneCD is on the machine:
Look on your taskbar at the bottom right of your screen (next to the clock). Locate the CloneCD tray icon, which can be a picture of two CD-ROMs or of a sheep’s head. Right-click on the icon and make sure ‘Hide CD-R media’ is unticked. Restart the installation.

If Daemon Tools is on the machine:
Right-click on the Daemon Tools icon in the taskbar. Select the Emulation tab and deselect SafeDisc.
If you continue to have problems after trying the above solutions please contact the Support team via the Support page at justflight.com.

When trying to install this title I receive an error message that mentions either -6001 or -5001. How do I fix this?
This error is caused by the InstallShield system leaving some files behind during a previous installation of some other software. Please download and run the ISClear tool (obtainable from the Support page at justflight.com). This should solve the problem and you will then be able to install correctly.

Accessing the aircraft
To access the 146-200/300 variants in FSX:
1. Click on Free Flight
2. Select ‘Just Flight’ from the ‘Publisher’ drop-down menu
3. Select ‘British Aerospace’ from the Manufacturer drop-down and choose one of the 146 variants.
Tick the ‘Show all variations’ box to see all the available airline liveries.
Uninstalling
To uninstall this software from your system:

- Go to the Windows Start menu and select ‘Control Panel’ (if you are in Windows Classic view, Control Panel will be found under ‘Settings’)
- Double-click on the item ‘Add or Remove Programs’ (Windows XP) or ‘Programs and Features’ (Windows Vista or 7). In Windows 8 move your mouse to the bottom left corner, right-click with your mouse, then left-click on the ‘Programs and Features’ menu that appears.
- Select the program you want to uninstall from the list provided and click the ‘Uninstall’ option.
- Follow the on screen instructions to uninstall the program.

Uninstalling or deleting this software in any other way may cause problems when using this program in the future or with your Windows set-up.

Website Updates
Please check the News and Support pages on our website at justflight.com for news and updates for this and all our other products.

Technical Support
To obtain technical support (in English) please visit the Support pages at justflight.com. As a Just Flight customer you can obtain free technical support for any Just Flight or Just Trains product.

If you don’t have Internet access, please write to us at Just Flight Technical Support, 2 Stonehill, Stukeley Meadows, Huntingdon, PE29 6ED, UK.

Regular News
To get the latest news about Just Flight products, sign up for our newsletter at justflight.com/newsletter.
Main panels

1. AFGS annunciator
2. Clock test button
3. Airspeed/Mach indicator
4. Digital clock/chronometer
5. Dual-needle radio magnetic indicator (RMI)
6. Attitude Indicator (AI)
7. Horizontal Situation Indicator (HSI)
8. Altimeter
9. Radio altimeter/decision height selector and alert (decision height can be set manually)
10. Vertical speed indicator (VSI)
11. Brake pressure indicators (yellow and green hydraulic systems)
12. Standby altimeter
13. Standby attitude indicator
14. AFGS annunciator
15. Transponder switch
1. Engine oil quantity, temperature and pressure gauges
2. N1 gauges – low pressure compressor/turbine speed
3. TGT gauges – engine exhaust gas temperature gauge
4. N2 gauges – high pressure compressor/turbine speed
5. Fuel flow gauges
6. Fuel quantity gauges
7. Fuel quantity electric feed button
8. Master warning system annunciator
9. Flap position indicator
10. Engine vibration gauges
11. Engine vibration gauge test button
12. Undercarriage lever
13. Spoiler and undercarriage position indicators
1. Cabin altitude and pressurisation rate indicator
2. Outside air temperature gauge (OAT)
3. Dual-needle radio magnetic indicator (RMI)
Overhead panel

1. Yaw damper master switches
2. Autopilot master switch
3. Avionics A master switch
4. Avionics B master switch
5. Ground ignition selector
6. Brake fan selector
7. Anti-skid & lift spoiler caution lights
8. Anti-skid switch
9. Lift spoiler switches (yellow and green hydraulic systems)
10. Hydraulic pressure and quantity (yellow and green hydraulic systems)
11. Yellow and green hydraulic system caution lights
12. Engine 2 pump switch
13. DC pump selector switch
14. AC pump selector switch
15. Power transfer unit (PTU) switch
16. Engine 3 pump switch
1. Fuel tank quantity gauges
2. Fuel system caution lights
3. Fuel temperature gauge
4. Tank selector mode switch
5. Cross-feed switch
6. Left fuel standby pump switch
7. Left common feed switch
8. Right common feed switch
9. Right fuel standby pump switch
10. Fuel pump caution lights
11. Engine fuel pump switches
1. Barber pole needle (VMO)
2. IAS hold speed bug
3. IAS hold bug knob
4. Speed bugs
5. Airspeed needle
6. Mach indicator

1. Clock test button
2. Real time/flight time switch
3. Elapsed time switch
4. Dim lighting switch
5. Time correction switch
1. DME read-out
2. VOR/GPS flag
3. Course deviation indicator (CDI)
4. Glideslope indicator
5. Ground speed read-out
6. Heading bug

1. DME 1 read-out
2. VOR/ADF 1 switch
3. VOR/ADF 2 switch
4. VOR/ADF 1 needle
5. VOR/ADF 2 needle
6. DME 2 read-out
1. Speed deviation scale
2. Instrument failure flag
3. Aircraft symbol
4. Test button
5. Slip indicator
6. Localiser position indicator
7. Glideslope position indicator
8. Glideslope indication failure flag
9. Localiser indication failure flag
1. Generator 1 switch
2. Galley / Shed switch
3. APU generator switch
4. Generator 4 switch
5. Generator caution lights
6. Generator current gauges
7. External AC Master switch
8. AC/DC bus-tie switches
9. Standby inverter master switch
10. Standby generator master switch
11. Electrical system caution lights
12. AC amps gauge (source is selected using AC selector knob)
13. AC selector knob
14. Hertz (Hz) gauge
15. DC volts gauge (source is selected using DC selector knob)
16. DC selector knob
17. Battery master switches
18. Transformer rectifier 1 and 2 current gauges (amps)
19. Battery current gauge
1. APU RPM gauge
2. APU start/stop switch
3. APU caution lights
4. APU exhaust gas temperature gauge (TGT)
5. APU caution lights

1. Starter mode switch
2. Start selector switch
3. Start master switch
4. Engine start/ignition caution lights
5. Flight start switch
6. Continuous ignition A & B switches
7. Engine starter switch
8. Ice protection caution lights
9. Engine anti-ice switches
1. Discharge valve selector knob
2. Discharge valve 1 & 2 position indicators
3. Manual pressure rate knob
4. Pressurisation auto/manual button
5. Cabin and flight altitude gauge
6. Auto-pressurisation rate knob
7. Cabin altitude knob

1. Heater caution lights
2. Screen heat switches
3. Auxiliary and left vane heat switch
4. Pitot heat and right vane heat switches
5. Anti-ice valve caution lights
6. Outer wing anti-ice switch
7. Inner wing anti-ice switch
8. Tail anti-ice switch
1. Cabin air mode switch
2. Pack 1 & 2 switches
3. Ram air switch
4. APU air switch
5. Left and right wing loop switches
6. Air supply caution lights
7. Engine air switches
8. Packs and cabin air caution lights

1. Instrument light switch
2. Overheard annunciator test switch
1. Ground test switches
2. Panel flood light switch
3. Wing lights switch
4. Logo light switch
5. No Smoking notice switch
6. Cabin emergency notice switch
7. Rotating beacon light switch
8. Strobe light switch
9. Navigation light switch
10. Flight deck automatic/manual temperature control switch
11. Flight deck duct temperature select switch
12. Flight deck fan switch
13. Cabin fan switch
14. Cabin duct temperature select switch
15. Cabin automatic/manual temperature control switch
16. Flight deck automatic temperature selector
17. Flight deck duct and cabin temperature gauges
18. Cabin duct temperature gauge
19. Cabin automatic temperature selector
1. Flight deck emergency light switch
2. Runway exit lights switch
3. Landing/taxi light switches
4. Windscreen wiper switches
5. Fasten seat belts notice switch

Pedestal

1. ADF 1 active frequency
2. ADF 1 standby frequency
3. COMM 1 active frequency
4. COMM 1 active/standby frequency selector
5. COMM 1 standby frequency
6. Add-on weather radar selector knob
7. Add-on weather radar (if applicable – refer to separate PDF manual)
8. ADF 2 active frequency
9. ADF 2 standby frequency
10. COMM 2 active frequency
11. COMM 2 active/standby frequency selector
12. COMM 2 standby frequency
13. GPS click-spot

1. Speed brake lever
2. Engine throttle levers (fuel can be cut off by clicking on the base of each throttle lever when they are placed in the idle position)
3. Flap lever
1. Rudder trim wheel
2. Elevator trim
3. Elevator disconnect handle
4. Parking brake lever
5. Aileron trim wheel
6. Autopilot-forced rudder and elevator control indicators
7. Yaw damper and autopilot engage switches
8. Pitch rate switch
9. Roll rate knob
10. Indicated brake temperature buttons
11. Brake temperature read-out
12. Transponder
1. Flight director bars switch
2. MWS warning light
3. MWS caution light
4. NAV DME Hold selector (inoperative in this simulation)
5. NAV 1 active/standby swap button
6. NAV 1 active/standby frequencies
7. ACT PRE switch
8. NAV 1 frequency select knob
9. ILS test switch
1. Approach hold button
2. Altitude hold button
3. Vertical speed hold button
4. Mach hold button
5. VNAV button (inoperative in this simulation)
6. IAS hold button
7. Nav hold button
8. Back course hold button
9. Wing leveller button
10. LNAV GPS button (autopilot will hold the GPS flight plan)
11. Heading hold button
12. Autopilot master button
13. NAV 1 course knob
14. NAV 2 course knob
15. Heading bug knob
16. NAV 1 course value
17. NAV 2 course value
18. HSI NAV select split knob

1. ALT ARM (altitude arm) button
2. ALT SEL (altitude select) window
3. Altitude select wheel
Panel Selector Icons

The panel selector icons can be accessed via the 2D panel. Click on the arrow found in the bottom right corner of the 2D panel to bring up the panel selector icons.

1A Open FMC 8B Side panel
1B Open NAV2 radio panel 9A Engine gauges zoom
2A Compass panel 9B Glareshield zoom
2B Overhead panel 10A GPS
3A Pedestal 1 panel 10B Checklist
3B Pedestal 2 panel 11A ATC
4A Pedestal 3 panel 11B Map
4B Pedestal 4 panel 12 Auto start/Auto shutdown (refer to Auto start/Auto shutdown section)
5A GPU 13 Toggle standard/widescreen panel
5B First Officer panel 14 Collapse icon panel
6A Yoke 15 Click here and drag the mouse cursor to move the panel selector icons
6B Clock
7A Main annunciator zoom
7B Top annunciator zoom
8A Captain’s instruments zoom

Yoke Controls

Several functions can be controlled using the buttons found on the yoke:

1. Auto start/Auto shutdown – this button functions in the same manner as the Auto start/Auto shutdown icon. Please refer to the Auto start / Auto shutdown section below for details on how this system works.

2. Autopilot disconnect – this button disconnects the autopilot master.

3. Autopilot SYNC mode – this button uncouples the autopilot without switching it off. This allows you to uncouple the autopilot, alter the aircraft pitch and then couple the autopilot again. The autopilot will then maintain the new pitch setting.
Autopilot

The autopilot on the 146 differs from those found on the more common Boeing and Airbus airliners. In order to control the autopilot, attention will need to be paid to three areas of the cockpit.

Before the autopilot can be used, the Autopilot Master switches on the AVIONICS portion of the overhead panel need to be moved to the ON position.

The autopilot can now be engaged by pressing the AP button on the pedestal.

The AP button located on the glareshield will illuminate, indicating that the autopilot is engaged.

- **GSL** – Engages approach hold mode, allowing you to capture and hold the glideslope when carrying out an ILS approach
- **ALT** – Engages altitude hold mode. When pressed, the current altitude will be held by the autopilot. If ALT ARM has been used, the ALT button will illuminate once the aircraft has reached the altitude shown in the ALT SEL window to indicate that the aircraft is maintaining the selected altitude
- **VS** – Engages vertical speed hold mode. When pressed, the current vertical speed will be held
- **V NAV** – This button is inoperative in this simulation
• **IAS** – Engages indicated airspeed hold mode. The aircraft will either climb or descend to hold the airspeed that the aircraft was maintaining when the button was pressed. This should not be confused with the auto-throttle or VNAV systems on board modern airliners. The autopilot will not alter the throttle position; it will simply alter the aircraft pitch to maintain the current airspeed at the current throttle position. For this reason you must monitor both your airspeed and throttle position when using this autopilot mode.

• **V/L** – Engages VOR LOC / NAV hold mode. When pressed, the aircraft will alter the aircraft heading to intercept a VOR radial or the localiser for an ILS approach.

• **B LOC** – Engages back-course hold mode for use on ILS approaches.

• **TURB** – Engages turbulence mode, softening autopilot-controlled movements. Only HDG mode can be engaged when TURB mode is active.

• **L NAV** – Engages GPS hold mode. When pressed, the autopilot will steer the aircraft to maintain the route programmed into the GPS.

• **HDG** – Engages heading hold mode. When pressed, the autopilot will steer the aircraft to maintain the heading selected using the HDG control knob.

• **ALT ARM** – Engages altitude arm mode. When pressed, and with either IAS or VS mode engaged, the autopilot will climb or descend to the altitude shown in the ALT SEL window before levelling out.

The autopilot can be disconnected by clicking on the AP button on the pedestal, pressing the [Z] key or by clicking on the autopilot disconnect button found on the yoke in the virtual cockpit.
Panel configurations

Using the ‘toggle standard/widescreen panel’ icon, you can switch between the standard and widescreen 2D panel configurations. The standard 2D panel configuration is similar to that which you would find in other products, whereas the widescreen 2D panel configuration provides you with a view of the entire panel, encompassing both the Captain’s and First Officer’s sides.

Auto start / Auto shutdown

When selected, the 146 will load with an unconfigured panel, requiring you to follow the checklists found in this manual in order to correctly configure the aircraft for flight. By clicking on the AUTO panel icon, the panel will automatically configure itself for flight. Clicking on the AUTO panel icon again will automatically shut down the aircraft, putting it into a ‘cold and dark’ state.

The AUTO panel icon will appear green when the Auto start function is enabled and will appear red when the Auto shutdown function is enabled.

Alternatively, you can activate the Auto start/Auto shutdown function by clicking on the right thumb rest on the yoke in the virtual cockpit.

Doors & Ground Power Unit

This panel allows you to open individual passenger and cargo doors, deploy the passenger air stairs and enable the ground power unit to provide AC/DC current to the aircraft.

To open a door or activate the air stairs, simply click on the blue box that surrounds the door or air stairs location. The blue box that you click on will turn yellow, indicating that the door is open or that the air stairs are deployed.
If you have installed the 146-300 Quiet Trader expansion pack which is available to buy as a Download from the Just Flight website, you will notice some slight differences when opening this panel on the Quiet Trader variant. In place of the rear passenger door and stairs there are three options for the large cargo door. The three options allow you to close the cargo door, open it half way or open it fully.

To activate the ground power unit, click on the AC and DC boxes. They will illuminate green to indicate that they are enabled.
This add-on includes an F-Lite style FMC (Flight Management Computer) which can be installed into all models.

The real 146-200/300 was not fitted with a FMC as it left the factory but we thought that you might like the added versatility of flying with an FMC. If you prefer to keep things simple, you can still fly the 146-200 and 146-300 without it!

The FMC provides the following features:

- Flight Plan pages – load and activate pre-made FSX flight plans without having to leave the cockpit; track the route, and get an overview of distances and arrival times to the next waypoint en route and your destination
- Modify your route and save it
- Cockpit Navigator pages – easily switch (open/hide) panels via the FMC
- Checklist pages – access the 146-200/300 checklists and work through them with the help of the FMC showing you matches/mismatches between required checklist items and current aircraft settings. Only when all aircraft settings match the checklist requirements will the checklist will be completed and closed
- Aircraft/flight status page, showing date/time, coordinates and some general aircraft information at a glance (flaps status, gear status, fuel status, lights etc.)
- The FMC can hold two flight plans – an active flight plan and a standby flight plan. You can load a flight plan direct as the active flight plan (for immediate use) or you can load it as standby flight plan and set it active later. You can have an active and a standby flight plan loaded at the same time, so that you have an alternate route in case you need to change plans. With both flight plans you can add and remove waypoints
FMC/CDU GUIDE

The CDU (Control Display Unit) – as the name suggests – allows you to monitor and control aircraft parameters, mainly those related to automated flight. The FMC (Flight Management Computer) is located in an avionics bay and it is this computer that is controlled using the CDU.

The CDU on this aircraft is based on a real unit, but it has been simplified and functionality added to better suit the needs of the FSX pilot.

The CDU consists of a screen with six display lines left and right. There is a row of keys (buttons) next to each line (left and right) called Line Select Keys (LSKs).

The documentation below refers to these keys as LSK L (left) and LSK R (right), together with a number (1-6) to indicate the line.

The last line on the CDU is the ‘Scratchpad’, where your keypad input is displayed.
Turning the CDU on/off

When loading the aircraft, the CDU will be in a ‘Cold & Dark’ state. Press the ON/OFF MENU button to switch on the CDU unit.

INIT page

The first page that will appear after switching on the unit is the INIT (initialisation) page. This page also appears when you are on any other page and press the ON/OFF MENU button.

Pressing the ON/OFF MENU button whilst on this INIT page will switch off the CDU.

The INIT page shows you the aircraft type, engine type and information about the flight plan database and navigation database.

In LSK 6L and 6R you can see which cruising speed and altitude will be used for the flight plan calculations. You can change these values as follows:

1. Enter a number into the scratchpad using the number keys (press CLR if you wish to delete them)
2. Press LSK 6L to accept the entry as the new cruise speed

3. The same method works for entering a new cruise level

INIT REF page

Pressing the *INIT REF* key will bring up the STATUS page. The first page shows some general information:

- Current latitude and longitude
- Aircraft weight
- Weight of fuel being carried
- Current altitude (feet)
- Current airspeed (knots indicated airspeed)
- Current time (UTC)
- Current time (Local)

Press the *NEXT PAGE* key to switch to the second STATUS page.

This page displays gear and flaps status, showing the positions of the left and right trailing edge flaps and the flaps handle, and also the gear status including the gear handle position.

If any of these units don’t match the others you’ll see a ‘disagree’ warning (FLAPS DISAGR or GEAR DISAGR).
Normally this warning will eventually disappear (e.g. when flaps or gear are in transition), but in case of power or hydraulic failure you'll find this useful to determine how the control surfaces and gear are currently positioned.

Press **NEXT PAGE** again to switch to the final STATUS page.

This page displays information about the spoiler/airbrake, including whether the spoilers are armed, the spoiler lever position and current position of the left and right spoilers.
CKPT NAV (Cockpit Navigator) page

Press the CKPT NAV button to open the Cockpit Navigator page. This page allows you to open the most important 2D panels. You can switch any 2D panel on/off by clicking on the LSK next to the relevant panel name. For example, clicking on LSK 1L will open the overhead panel.

CHECKLIST page

The CHECKLIST page contains several electronic checklists, based on the checklists found on the kneeboard.

Unlike the kneeboard checklists, these are interactive. You read them, tick the items off, and when all items are ticked off the checklist title will turn green to indicate it has been completed.

You can tick off the item by clicking on the relevant LSK.
RTE (Route) page

Press the RTE button to open the route page. You can have two flight plans loaded. One can be the active plan (the one which is being fed into the GPS/navigation system) and the other is a standby flight plan which can be used in case of detours etc.

You can open a flight plan in two ways:

1) Load one of the flight plans in the database that is provided with 146-200 Jetliner. These flight plans cover routes between some of the most popular destinations worldwide.
2) Load a pre-made FSX flight plan (which you have generated using the FSX Flight Planner menu)

To load a 146-200/300 database flight plan:

Enter the desired departure and destination IDs (these need to be four-letter ICAO IDs) into the scratchpad and press the LSKs next to DEP ID and DEST ID.

You’ll see three new options:

- Load the flight plan as standby plan
- Load the flight plan as active plan
- Fly to the destination airport direct

At this point the program does not yet know if the flight plan actually exists in the database. Select one of the options above, e.g. LOAD ACTIVE.
If the flight plan exists, you will be taken to the flight plan (PROG) page automatically.

If the flight plan doesn’t exist, you will get the message ‘NOT AVAILABLE’.

However you can still fly the route direct by clicking the DIR ROUTE button.

To load a pre-made FSX flight plan:
This is the LOAD FSX flight plan page:

This page shows a list with all the flight plans that exist on your hard drive (in the ‘Documents\Flight Simulator X Files’ folder). Some file names might be too long to be displayed; in this case the one selected will scroll through the scratchpad.
Selecting one of the flight plans will bring up two options, LOAD STBY and LOAD ACTIVE. Pressing **LOAD ACTIVE** will make the flight plan active.

PROG (Route Progress) page

The active flight plan appears on the PROGress page. This page has four sub-pages:

Page 1 shows the route distances (between waypoints and the total distance en-route).

Page 2 shows the estimated speed and altitude at the waypoint. You can also use these figures to set the autopilot (discussed later).
Page 3 shows the estimated fuel (total fuel required and fuel remaining) at each waypoint in increments of 1,000 lbs.

Page 4 shows the estimated time of arrival at the waypoint (UTC time).

On longer flight plans (which don’t fit onto a single page) you can scroll through the waypoint list by pressing the PREV/NEXT keys.

RAD NAV (Radio Navigation) page

Press the RAD NAV button – this will take you to the Radio Navigation page.
To the left you can see the active and standby frequencies on NAV1, NAV2 and ADF. The active and standby frequencies for COM1, COM2 and the transponder can be found on the second page.

To change a frequency/code, enter the appropriate frequency/code into the scratchpad and then press LSK 1R.

The frequency/code will appear in line 1R.

Press one of the LSK R keys to set the frequency on NAV1, NAV2 or ADF as the active or standby frequency.
CLR Key – Removing waypoints

On the flight plan page (PROG or STBY F-PLAN) press CLR. This will either clear the scratchpad or – when the scratchpad is already empty – will display ‘CLR’.

Press the LSK next to the waypoint that you wish to remove. The waypoint ID appears next to CLR.

Press CLR again – the waypoint will be removed.

DIR – Direct routing

To fly to a waypoint direct, select the waypoint on the active flight plan page (PROG). The ID will show on the scratchpad.
Press **DIR INTC**. This will take you to the DIRect-to page. The waypoint ID is already entered in the ID field.

Press the LSK next to DIR TO INSERT – the aircraft will remove all waypoints up to the selected one and fly direct.

DEP/ARR (Departure and Arrival) page

If you press the **DEP/ARR** button while on the ground, you will be automatically taken to the DEPARTURE page. If you press the button in the air you will be taken to the ARRIVAL page. You can still toggle between the two pages using the PREV PAGE and NEXT PAGE buttons.

The DEPARTURE page shows:
- VR (rotate) speed
- V2 speed
By default the speeds shown on this page are for use with only the 18-degree flap setting. To display the V-speeds for other flap settings press LSK 1L, 2L or 3L.

The ARRIVAL page displays V-speeds that are relevant to the approach and landing phases of flight, as well as the flap and gear extend speeds.

The VFE for each flap setting will turn green, with the word OK beside it, only when the aircraft has slowed to below the speed shown.
Flying the 146-200/300 using the FMC/CDU

Once you have loaded your flight and have configured the aircraft, press the ON/OFF MENU button switch on the CDU.

Change the CRZ SPEED (cruise speed) and CRZ LVL (cruise level) values to suit your flight plan.

Select the flight plan that you wish to load and choose LOAD ACTIVE.
The flight plan will now appear on the ROUTE PROGRESS page.

![ROUTE PROGRESS page](image)

To get the aircraft to follow the flight plan, engage the autopilot and press the L NAV button.

![Autopilot panel](image)

The autopilot will now hold the flight plan that is programmed into the FMC/CDU.

MODEL CONFIGURATIONS

The 146 was in service with several window and air stair configurations. Tools have been included with this aircraft so you can select which of these configurations you would like to use for each of the liveries.

The tool can be found in Start >All Programs>Just Flight>146-200/300 Jetliner. There are tools for the 146-200 and 146-300 models.

Follow the on-screen instructions to select one of the following configurations:

- All passenger windows visible – no air stairs fitted
- First left passenger window fitted with blanking plate – front air stairs fitted
- First left and right passenger windows fitted with blanking plates – front air stairs fitted
- First left and right, and last left passenger windows fitted with blanking plates – front and rear air stairs fitted
- First left and right, and last left and right passenger windows fitted with blanking plates – front and rear air stairs fitted

You can choose between FMC and GPS navigation methods by using the tool for the **146-200**. Selections via this tool will govern the navigation method for the 146-200 and 146-300 and also the 146-300 QT model (if installed).
WEATHER RADAR INTEGRATION

These instructions provide information on how to integrate third-party weather radar into the 2D and virtual cockpit.

For the sake of simplicity, these instructions have been written for the 146-200 model. The process for installing weather radars into the 146-300 aircraft is identical apart from the need to edit the 146-300 files rather than those of the 146-200.

Three different weather radars can be integrated into the 146-200/300:

- Reality XP Wx500
- Captain Sim Weather Radar
- XGauge from HiFi Simulations’ Active Sky Advanced, Active Sky Evolution or Active Sky 2012

Please note that these weather radars are not included in this product and will need to be purchased separately.

Once integrated, the weather radar will be placed in the middle of the pedestal, overlaying the existing weather radar dummy unit. The weather radar can then be operated fully and is even lighted correctly at night.

You can integrate all three weather radars and use the knob shown below to select which radar you would like to use as you fly.

The knob has four positions:

0. Display no weather radar
1. Display the Reality XP Wx500
2. Display the Captain Sim Weather Radar
3. Display the HiFi Simulations XGauge
Integrating the Reality XP Wx500

Integration into the 2D panel

The procedure for installing the Wx500 into a 2D panel is described in detail in the Reality XP Wx500 user manual.

To integrate the Wx500 into the 2D panel, open the configuration utility which comes with the unit (Wx500 Config FSX) and select the 146-200/300 panel from the list:

Click on the ‘Configure Aircraft’ button and then select the position in which you want to place the weather radar.

Click on the ‘OK’ button to save the changes.
Integration into the virtual cockpit

To integrate the Wx500 into the virtual cockpit, you will need to edit the panel.cfg file located in the panel folder, within the aircraft folder:

```
../SimObjects/Airplanes/CLS_BAe146_200/panel.xxx (where xxx is the panel variant that you would like to edit)
```

Open the panel.cfg file using an editor such as Notepad and search for the section [V Cockpit04].

Find the line `texture=$M8WXR1` and add the following after it:

```
gauge00=rxpWX500!RDR,0,0,512,382
```

The section should now look like this:

```
[V Cockpit04]

file=../Paneltexture\CLS_BAe_146_200_WXR_BG.bmp
size_mm=512
visible=1
pixel_size=512
texture=$M8WXR1
gauge00=rxpWX500!RDR,0,0,512,382
```

Save the changes that you have made to the file and the Wx500 will now appear when you move the radar selector knob in the virtual cockpit to position 1.

Integrating the Captain Sim Weather Radar

Integration into the 2D panel

The procedure for installing the Captain Sim Weather Radar into a 2D panel is described in detail in the Captain Sim Weather Radar user manual, which can be downloaded from the Captain Sim website.

To integrate the Captain Sim Weather Radar into the 2D panel, open the configuration utility which comes with the weather radar (WXR Editor), select `CLS_BAe146_200` from the ‘Select Aircraft’ drop-down box and then select panel.xxx (where xxx is the panel variant that you would like to edit) from the ‘Select Panel’ drop-down box.

Click on the **Add WXR** button to add the weather radar to the 2D panel.
Integration into the virtual cockpit

To integrate the Captain Sim Weather Radar into the virtual cockpit, you will need to edit the panel.cfg file located in the panel folder, within the aircraft folder:

`.../SimObjects/Airplanes/CLS_BAe146_200/ panel.xxx` (where xxx is the panel variant that you would like to edit)

Open the panel.cfg file using an editor such as Notepad and search for the section `[V Cockpit05]`.

Find the line `texture=$M8WXR2` and add the following after it:

`gauge00=WXR!wr_display, 80,32,350,275
gauge01=Captain_Sim.r001.P04!P04_radar, 0,0,512,382`

The section should now look like this:

`[V Cockpit05]

file=..\Paneltexture\CLS_BAe_146_200_WXR_BG.bmp
size_mm=512
visible=1
pixel_size=512
texture=$M8WXR2
gauge00=WXR!wr_display, 80,32,350,275
gauge01=Captain_Sim.r001.P04!P04_radar, 0,0,512,382`

Save the changes that you have made to the file and the Captain Sim Weather Radar will now appear when you move the radar selector knob in the virtual cockpit to position 2.
Integrating the HiFi Simulations XGauge

Integration into the 2D panel

The procedure for installing the HiFi Simulations XGauge into a 2D panel is described in detail in the Active Sky Advanced, Active Sky Evolution and Active Sky 2012 user manuals.

To integrate the XGauge into the 2D panel, open the configuration utility which came with the weather radar: XGauge Installation Wizard. Choose your Flight Simulator version and follow the on-screen instructions.

Integration into the virtual cockpit

To integrate the XGauge into the virtual cockpit, you will need to edit the panel.cfg file located in the panel folder, within the aircraft folder:

```
.../SimObjects/Airplanes/CLS_Ba146_200/panel.xxx (where xxx is the panel variant that you would like to edit)
```

Open the panel.cfg file using an editor such as Notepad and search for the section `[V Cockpit06]`.

Find the line `texture=$M8WXR3` and add the following after it:

```
gauge00=XGauge!WeatherMap,0,0,512,382
```
Save the changes that you have made to the file and the XGauge will now appear when you move the radar selector knob in the virtual cockpit to position 3.
FAQS

How do I open the doors and extend the air stairs?
You can open the passenger and cargo doors, and extend the air stairs, using the GPU pop-up panel. Please refer to the ‘Doors & Ground Power Unit’ section of the manual for detailed instructions.

Why is the elevator position fixed while on the ground?
The elevator will have a fixed deflection when below 50 knots. As you accelerate to speeds above 50 knots, the elevator will return to the normal position.

Why can I not move the ailerons or flaps?
Please ensure you have configured the aircraft correctly, making use of the checklists or tutorial flight. If the hydraulic systems are not correctly configured, the ailerons and flaps will not function.

The instruments are not working when I load the aircraft
The cockpit needs to be configured either by following the checklists, tutorial flight or alternatively by using the Auto Start icon.

How do I get the weather radar to work?
The aircraft does not feature its own weather radar, but the Reality XP, Captain Sim or HiFi Simulations units can be fully integrated into the virtual cockpit. Please refer to the separate weather radar PDF manual for detailed instructions on how to set up your chosen weather radar.

How do I switch on TCAS?
To switch on TCAS, click on the switch found on the top right corner of the vertical speed indicator gauge.

How do I operate the fuel valves on the throttle levers?
Move the throttle lever to the idle position and then right-click on the base of the lever to open or close the fuel valve.

How do I engage the autopilot?
To engage the autopilot, the autopilot master switch on the overhead panel needs to be switched on. You then need to press the AP button found on the pedestal to engage the autopilot. Please refer to the ‘Autopilot’ section of the manual for more instructions on configuring the autopilot.
How do I use the multi-position rocker switches?
The multi-position rocker switches, for example the BRK FANS switch, have three positions denoted by three black spots. Left click on the upper, middle or lower portion of the switch to select one of the positions.

How do I access the virtual cabin?
You can access the virtual cabin either by using the FSX viewpoint movement keys, a third party tool such as Walk & Follow or by selecting one of the cabin viewpoint presets found under the ‘Virtual Cockpit’ view category.

How does the cockpit night lighting function?
There are four cockpit lighting switches:
- **PANEL FLOOD** – in the top right corner of the overhead panel. This switch turns on the flood lighting for the main panel area
- **DIM GLARE SHIELD** – in the bottom left corner of the overhead panel. This switch turns on the panel backlighting
- **DIM INSTS** – in the bottom right corner of the overhead panel. This switch turns on the gauge backlighting
- **DIM PANEL** – in the bottom right corner of the overhead. This switch turns on the cockpit flood lighting

Why does an ENG OVSPD (engine overspeed) caution appear on the MWS when I advance the throttle levers?
An ENG OVSPD caution will appear on the MWS if the N1 rises above 100%. Adjust the throttle lever positions to reduce N1 to below 100%.

Why do the lights not turn on when pressing the [L] key?
Due to the complexity of the lighting system, it makes use of custom coding and therefore the keyboard shortcut cannot be used. Please use the lighting switches found on the overhead panel.
TUTORIAL – FLYING THE 146-200
(BRUSSELS TO MANCHESTER)

For today’s tutorial flight we will be departing from Brussels National airport, to the north-east of the city, in the colours of Brussels Airlines. We will be heading north-west, leaving the coast of Belgium close to Ostend, before entering UK airspace to the east of London. We will then turn further north, heading first for East Midlands airport before continuing to Manchester. Covering a distance of approximately 300 nautical miles, this route is the ideal length for learning about the various systems on board the 146.

Here are the details for today’s flight:

Flight plan

Estimated time en-route: One hour (subject to weather)

Route distance: 329 nautical miles

Departure time: 11:30 (local time)

Weather: Clear
Now that we are prepared for the flight we can proceed to the cockpit to begin our pre-flight checks. To load up the 146-200 tutorial flight, follow these steps:

1. Start Flight Simulator X

2. Select the **Free Flight** menu

3. Choose **Load** from the row of buttons just above the aircraft preview window

4. Select **146 tutorial flight** from the list of saved flights

5. Click on **Fly Now!**

You should now find yourself sitting in the cockpit of a 146-200 located at gate 143 of Brussels National airport. The cockpit is currently in a ‘cold and dark’ state. This term is used to describe a cockpit in which all its systems are switched off, as you would find it prior to the first flight of the day. This means we will need to spend some additional time setting up the cockpit, but doing so with the assistance of this tutorial will allow you to learn a considerable amount about the features and functions on board this classic aircraft.

The first thing we need to do is get the aircraft ready for passenger boarding. Open the GPU and door panel by pressing the **GP** icon. Click on all of the boxes in order to open both of the passenger doors, the cargo doors and lower the air stairs.

The cabin crew and airport staff can now begin their preparations for passenger boarding while we continue setting up the aircraft ready for the flight ahead.

We can now power up the aircraft.
Overhead panel

The overhead panel of an unfamiliar aircraft is always a daunting sight. Even experienced pilots may not have come across the cockpit systems that are present in this particular aircraft, which differ from those found in more common aircraft such as those manufactured by Airbus and Boeing.

The 146 uses a dark cockpit philosophy, similar to that found in Airbus aircraft. This means that when the various systems are configured and functioning correctly, the annunciator lights that relate to those systems will not be illuminated. If a particular system or switch requires attention, the relevant annunciator will illuminate to attract the pilot's attention.

We can demonstrate this now by switching on the battery master switches. Open the overhead panel and click on both the BATT 1 and BATT 2 switches. Press the MWS caution light on the glareshield to cancel the caution that is sounding.

Returning to the overhead, you will see that several annunciator lights below the battery master switches are illuminated, including EMERG AC OFF.

Now click the STBY INV switch to move it to the ARM position. Note how the EMERG AC OFF annunciator light extinguishes, signifying that the switch is now in the correct position to configure that particular system for this stage of the flight.

In order to provide power to the aircraft using the auxiliary power unit (APU), we need to turn on the left inner fuel pump. Click on the L INNER fuel pump switch to set it to ON.
We can now start the APU. Move the APU GEN switch to the ON position and then click on the APU START MASTER switch to start the APU.

The APU RPM gauge needle will rise and stabilise at approximately 100%, and the APU TGT gauge should read approximately 500 degrees Celsius. Various annunciator lights on the overhead panel will extinguish and illuminate as the APU begins providing power to the aircraft.

Press the MWS warning and caution lights to cancel the warnings.

Arm the the flight deck and cabin emergency lights.

Set all of the avionics master switches, located in the upper left corner of the overhead panel, to ON in order to provide power to the yaw damper, autopilot and avionics systems.

Click on the upper portion of the ANTI-SKID switch, and the YEL (yellow) and GRN (green) LIFT SPLRS switches to switch those systems on.
Set the **AC** and **DC BUS-TIE** switches to the **AUTO** position, and the **STBY GEN** switch to the **ARM** position.

Move the **APU AIR** and **PACK 2** switches to the **ON** position.

Click on the lower portion of the **DC PUMP** switch to set it to the **BATT** position.

Set the **GALLEY/SHED** switch to **GALLEY** to provide power to the galley.
Turn on the Fasten Seatbelts and No Smoking cabin signs by clicking on the FASTEN BELTS and NO SMKG switches.

Before starting the engines, we need to check that we have the correct fuel load for this flight. We are carrying a full fuel load for this flight; confirm that this is the case by taking note of the values shown on the fuel quantity gauges located at the bottom of the engine instrument stack.

We can now carry out the before-start checklist.

Before start checklist

Turn **ON** the three fuel pumps that are currently off (left outer, right inner and right outer).
Set the APU AIR and PACK 2 switches to OFF.

Turn on the four ENG ANT-ICE (engine anti-ice) switches – one per aircraft engine.

Turn on the wing lights using the switch found in the upper right corner of the overhead panel.
We now need to configure the pressurisation system for the flight. Rotate the **Cabin Alt Set** knob until the needle points to **8** on the outer scale (for 8,000ft) and rotate the **Autopress Rate** knob until the tool-tip reads **600** (for 600 feet per minute).

Set the **BEACON** light switch to **ON** to alert anyone located near the aircraft that you are about to start the engines.

Before we start the engines, we need to retract the air stairs and close both passenger doors and cargo doors.

Once you have closed all the doors, disengage the parking brakes and then press **[Shift]+[P]** to begin pushing back the aircraft.

We are now ready to start the engines.
Engine start

Set the **START MASTER** switch to **ON** and move the **START SELECT** knob to position 4 – corresponding to engine 4.

Now click on the upper portion of the **Engine Starter** switch to move it into the **START** position. Engine 4 will start to spool up as indicated by the engine instruments. Monitor the oil pressure reading, and once the N1 and N2 needles have stabilised at approximately 24% and 55% respectively, you can move the **START SELECT** knob to position 3 and press on the **Engine Starter** switch to start engine 3.

Repeat this process for engine 2 and then engine 1. Once all engines have been started, cancel the MWS caution by pressing the MWS caution light.

Once the aircraft has been pushed back beyond the central taxi line, press `[Shift]+[P]` to stop the pushback. Set the parking brakes so that we can carry out the after-start checklist.
After start checklist

Set the **START MASTER** switch to **OFF** and rotate the **START SELECT** knob to **OFF**.

Click on the **GEN 1** and **GEN 4** switches to move them to the **ON** position. The **GEN 1 OFFLINE** and **GEN 4 OFFLINE** annunciator lights will extinguish.

Set the **ENG 2 PUMP** and **ENG 3 PUMP** switches to **ON**. Both **LO PRESS** annunciator lights will extinguish.

Left-click twice on the upper portion of the **BRK FANS** (brake fans) switch to set it to **AUTO**.
Set the **APU AIR** and **PACKS 2** switches to **ON**.

Click on the upper portion of the **DC PUMP** switch once to set it to **OFF**.

Switch off the four **ENG ANT-ICE** switches.

Now switch on the **SCREEN HEAT, AUX & L.VANE, PITOT HTRS** and **R.VANE** switches.

All of the **ICE PROTECTION** annunciator lights will extinguish.

We now need to configure the aircraft for taxiing.
Taxi

Turn on both **TAXI LT** switches and the **NAV** light switch.

For this take-off we will be using 18 degrees of flap, so move the flap lever to the first detent.

Using the flap position gauge, confirm that the flaps have extended to the correct position.

On the pedestal, press the **YD** (yaw damper) button. The button will illuminate with **YD1/YD2** to indicate that the yaw damper is engaged.
We will be using the GPS unit to navigate for this flight, but to provide us with a DME read-out showing our distance from Manchester, tune the Manchester VOR/DME frequency into the VHF NAV radio – **113.55**.

![Navigation Panel with Manchester VOR/DME Frequency](image)

Following take-off our climb will be to 27,000ft on the runway heading of 247 degrees. We can use the autopilot shortly after take-off to make the climb phase more manageable.

Move the Flight Director Switch to the ON position.

![Flight Director Switch](image)
Using the **ALT SEL** (altitude select) wheel, set an altitude select value of **27000ft**.

![Altitude Select Wheel](image)
Using the **HDG** knob, select a heading of 247 degrees.

![Heading Knob](image)
We are ready to taxi to the runway. Release the parking brakes and advance the throttle levers slowly to get the aircraft moving.
Using this map, taxi to the holding point for runway 25R:

When you reach the holding point (B1), engage the parking brakes so that we can complete the before take-off checks.

Click on the upper portion of the AC PUMP switch to set it to the ON position.
Set the **LANDING LTS** and the **STROBE** lights to **ON**.

Release the parking brakes and taxi onto the runway, making sure you turn left to line up on runway 25R.

Bring the throttle levers forward to around 25%, check that the engines are stable using the engine instrument gauges and then advance the throttles forward until the N1 needles indicate 100% (the top of the green band).

Take-off and climb

As the aircraft starts to gather speed, keep it running down the centre line with small rudder inputs. As you approach **140 knots** (Vr), start to raise the nose of the aircraft. Slowly bring the nose up to approximately 10 degrees, rising to 13 degrees as you lift off the runway.

The aircraft will begin to climb away from the runway and you should be well clear of the ground by the time you reach 160 knots. Raise the undercarriage using the **G** key and alter your pitch to maintain **230 knots**, holding a heading of **247** degrees and retracting the flaps as you pass through **2,000ft**.

Passing through **2,500ft**, engage the autopilot by clicking on the **AP** (autopilot engage) button.
Now press the **ALT ARM** button followed by the **IAS** button. The autopilot will now vary the vertical speed in the climb to 27,000ft to hold 230 knots. Do not confuse this with the auto-throttle or VNAV systems on board modern airliners. The autopilot will not alter the throttle position; it will simply alter the aircraft pitch to maintain 230 knots at the current throttle position. For this reason, throughout the climb, you must monitor both your airspeed and throttle position (or N1 engine instruments).

Press the **HDG** button to engage heading hold mode.

The aircraft should now stabilise in the climb. Retard the throttle levers until the N1 gauges read **95%**. This will be our power setting for the climb. At regular intervals during the climb, refer to the N1 gauges and adjust the throttle levers to ensure that 95% N1 is set.

We can now engage navigation hold mode so that the aircraft follows the programmed GPS route. Press the **L NAV** button to engage GPS navigation hold mode. The aircraft will now turn starboard towards the GPS route.

Now that the aircraft is settled into the climb, we can go through the after take-off and climb checklist.
After take-off and climb checklist

Turn on the four ENG AIR switches, turn off the APU AIR switch and set both PACK switches to ON.

Click the lower portion of the AC PUMP switch once to set it to OFF.

Switch off the APU switch by moving the switch to STOP.

As you pass through FL100, switch both landing lights OFF.
Approaching the top of the climb at 27,000ft, remember that this aircraft does not feature an auto-throttle, so you will need to reduce the power setting to maintain our cruise speed of 270 knots. Setting 92% N1 should provide you with a stable airspeed.

As the Thames estuary comes into view, the DME read-out for Manchester’s VOR should come alive. We will be using the DME value to decide when to start our descent, as we are not receiving vectors or vertical guidance from ATC.

While we are in the cruise, take some time to study the cockpit using the panel guide section of this manual.

Descent

When the DME-1 window reads 80 miles, we will begin our descent into Manchester.

Lower the **ALT SEL** value to 03000 (3,000ft) and press the **ALT ARM** button.

Now press the **IAS** button to engage IAS Hold mode. The autopilot will now vary the pitch to maintain 270 knots. To begin our descent, reduce the power setting by retarding the throttle levers. The lower the power setting, the greater the descent rate will be as the autopilot attempts to hold 270 knots. Adjust the power setting so that a descent rate of -1800ft/min is achieved.

Once you are stable in the descent, press the **VS** button to hold that descent rate. You can now manipulate the throttle levers to maintain your airspeed.

Using the **Cabin Alt Set** knob, lower the cabin altitude so that the needle points to ground level – 0ft.
Approaching 20,000ft, reduce power to maintain **250 knots**.
As you pass through 10,000ft, switch **ON** the landing lights and reduce your airspeed to **240 knots**.

You should reach 3,000ft approximately 20 nautical miles from the Manchester VOR.
As the aircraft levels out, make sure you advance the throttle levers to maintain **240 knots**.
We can now work through the approach and landing checklists, so that we are ready well in advance of intercepting the ILS.

Approach and landing

Start the APU and make sure the RPM is stable at 100% and the APU TGT is stable at 500 degrees Celsius. Cancel the MWS caution.

We need to input the ILS frequency and course for our approach onto runway 05R.

Using the NAV 1 and NAV 2 course select knobs, select a course of **055** degrees.

Now select a frequency of **108.90** on VHF NAV 1 and 2.
Set the **APU Air** switch to **ON** and the **PACK 1** switch to **OFF**.

Now move the four **ENG AIR** switches to **OFF**.

When the DME value reaches 15nm, the aircraft will begin to set a course to intercept the ILS. At this point begin a descent to 2,000ft and start slowing the aircraft to **120 knots**.

As your airspeed decreases, begin to deploy the flaps as per the schedule:

- 210 knots – 18 degrees
- 180 knots – 24 degrees
- 170 knots – 30 degrees
- 150 knots – 33 degrees

Passing through **200 knots**, lower the landing gear and check for three green status lights.

When the DME is showing your distance from the VOR as being 7.5nm, press the **V/L** button to engage localiser hold mode. The course deviation indicator needle will begin to move towards the centre of the HSI.
The glideslope indicator will now begin to move down the scale on the attitude indicator. When the indicator reaches the dot above the central marker, press the **GSL** (glideslope) button to engage approach hold mode.

The aircraft will now pitch down to intercept the ILS. Keep the aircraft stable by maintaining 120 knots.

When the **RAD ALT** gauge reads **0500** (500 feet above ground level), disengage the autopilot and control the final phase of the approach by hand.

As the aircraft approaches the runway, start to bring the aircraft into a flare, gently raising the nose just above the horizon. Reduce the throttles to idle and the aircraft should touch down smoothly.

Deploy the airbrakes using the / (forward slash) key and ease the nose gear down onto the runway before commencing braking.

Once the aircraft has slowed to 25 knots, release the brakes and turn off on the first taxiway to the left. When you are safely off the runway, raise the flaps, switch off the strobe lights, and retract the airbrakes.

Switch off the landing lights and switch on the taxi lights before beginning your taxi to the terminal.

During the taxi, set the **SCREEN HEAT, AUX & L.VANE, PITOT HTRS** and **R.VANE** switches to **OFF**. Cancel the MWS caution light.
Once you have reached a suitable parking location, set your parking brake. We are now ready to go through the shutdown checklist.

Shutdown checklist

Right-click on the base of each throttle lever to close the **ENG Fuel Valves**. The engines will begin to spool down. Cancel the MWS caution and warning lights.

Set both the **GEN 1** and **GEN 2** switches to OFF.

Set both **ENG 2 PUMP** and **ENG 3 PUMP** to OFF.

Turn off all four fuel pump switches.
Turn off the fasten seat belt sign, taxi, beacon and wing lights. Set the **AVIONICS MASTER** switches to **OFF**.

Set the **ANTI SKID** and **YEL** and **GRN LIFT SPLRS** to **OFF**.

Turn **OFF** the **FLT DECK** and **CABIN EMERG LTS**.

Click on the **APU AIR** and **PACK 2** switches to set them to **OFF**.

Turn off the **APU** and **APU GEN**.

Set the **GALLEY/SHED** switch to **SHED**.

Click on **BATT 1** and **BATT 2** to set them to **OFF**.

Using the GPU and door panel, open the passenger and cargo doors and lower the air stairs.

Congratulations, you have completed your first flight in the 146!
CHECKLISTS

Pre-flight

External Checks Complete (doors closed)
Battery Selector BATT1 / Check Volts
BATT 1/BATT 2 ON (cancel MWS caution)
Standby Inverter ARMED
Parking Brake SET
Fuel Pump 2 (left inner) ON
APU GEN ON
APU START (cancel MWS warning/caution)
Emergency Lights ARMED
Master Switches ALL ON
Anti-Skid/Lift Spoilers ON
Bus Ties BOTH AUTO
Standby Generator ARMED
APU Air / Pack 2 ON / ON
DC Pump BATT
Galley ON
No Smoking Signs ON
Fasten Seat Belts ON
Take-off Trim SET
GPS initialised
Fuel Checked and sufficient for flight

Before start

Electrical Fuel Pumps ALL ON
Packs 2 / APU Air OFF / OFF
Engine Anti-Ice ALL ON
Wing Lights ON
Pressurisation Checked and set (8,000ft for 29,000ft cruise)
Air Conditioning Checked and set
Fuel Flow Meters Reset
Altimeters Checked and set

Starting

Rotary Beacon ON
Thrust Levers FUEL ON
Start Master ON
Start Selector ENGINE NO. 4
Engine START
Oil Pressure Check for rising pressure
N1/N2 Stable

(Repeat for engines 3, 2, and 1.)
After start

<table>
<thead>
<tr>
<th>System</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Master</td>
<td>OFF</td>
</tr>
<tr>
<td>Start Selector</td>
<td>OFF</td>
</tr>
<tr>
<td>Generator 1 and 4</td>
<td>ON</td>
</tr>
<tr>
<td>Hydraulic Pump 2 and 3</td>
<td>ON / ON CHECKED (cancel MWS caution)</td>
</tr>
<tr>
<td>Brake Fans</td>
<td>AUTO</td>
</tr>
<tr>
<td>APU Air / Packs 2</td>
<td>ON / ON</td>
</tr>
<tr>
<td>DC Pump</td>
<td>OFF</td>
</tr>
<tr>
<td>Engine Anti-Ice</td>
<td>ALL OFF</td>
</tr>
<tr>
<td>Heaters</td>
<td>ALL ON</td>
</tr>
</tbody>
</table>

Taxi

<table>
<thead>
<tr>
<th>System</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi Lights</td>
<td>ON</td>
</tr>
<tr>
<td>Nav Lights</td>
<td>ON</td>
</tr>
<tr>
<td>Flaps</td>
<td>SET</td>
</tr>
<tr>
<td>Yaw Damper</td>
<td>ON</td>
</tr>
<tr>
<td>Nav Aids and Flight Director</td>
<td>SET</td>
</tr>
<tr>
<td>Transponder</td>
<td>SET</td>
</tr>
<tr>
<td>Controls</td>
<td>Full and free movement</td>
</tr>
</tbody>
</table>

Before take-off

<table>
<thead>
<tr>
<th>System</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Pump</td>
<td>ON</td>
</tr>
<tr>
<td>Landing Lights</td>
<td>ON</td>
</tr>
<tr>
<td>Strobes</td>
<td>ON</td>
</tr>
<tr>
<td>WX Radar</td>
<td>ON</td>
</tr>
</tbody>
</table>

After take-off

<table>
<thead>
<tr>
<th>System</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear</td>
<td>UP / LIGHTS OUT</td>
</tr>
<tr>
<td>Flaps</td>
<td>UP AND INDICATED</td>
</tr>
<tr>
<td>Engine Air</td>
<td>ALL ON</td>
</tr>
<tr>
<td>APU Air</td>
<td>OFF</td>
</tr>
<tr>
<td>Packs</td>
<td>BOTH ON</td>
</tr>
<tr>
<td>AC Pump</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Climb

<table>
<thead>
<tr>
<th>System</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>APU Lights</td>
<td>STOP</td>
</tr>
<tr>
<td>Fasten Belts</td>
<td>OFF AT FL100</td>
</tr>
<tr>
<td>Pressurisation</td>
<td>Checked</td>
</tr>
</tbody>
</table>
Descent
Pressurisation Reset to ground level
Fasten Seat Belts AS REQUIRED
Lights Landing light on at 10,000ft

Approach
APU STARTED / CHECKED
Altimeters CROSS-CHECKED

Landing
Gear DOWN 3 GREENS
APU Air ON
Pack 1 OFF
Engine Air OFF
Lights AS REQUIRED
Flaps SET FOR LANDING

After landing
Strobes/Landing OFF
Taxi Lights ON
Airbrakes/Spoilers IN
WX Radar OFF
Flaps SELECTED UP
Heaters ALL OFF

Shutdown
Thrust Levers FUEL OFF
Generators 1 and 4 OFF
Hydraulics ALL OFF
Fuel Pumps 1 / 3 / 4 OFF
Fasten Seat Belts OFF
Taxi Lights OFF
Beacon OFF
Wing Lights OFF
Leaving aircraft

Master Switches OFF
Anti-skid / Lift Spoilers OFF
Emergency Lights OFF
Pack 2 / APU Air OFF / OFF
APU STOP
APU Generator OFF
Fuel Pump 2 OFF
Galley OFF
Lights OFF
Batteries OFF
Battery Selector OFF

Limits charts

<table>
<thead>
<tr>
<th></th>
<th>N1 %</th>
<th>N2 %</th>
<th>EGT (°C)</th>
<th>OIL (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAKE OFF</td>
<td>97</td>
<td>98.8</td>
<td>632</td>
<td>133</td>
</tr>
<tr>
<td>TRANSIENT (max - 10 seconds)</td>
<td>100</td>
<td>100</td>
<td>685</td>
<td>160</td>
</tr>
<tr>
<td>MAX CONT</td>
<td>97</td>
<td>96.9</td>
<td>613</td>
<td>133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flap Setting</th>
<th>IAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>215</td>
</tr>
<tr>
<td>24</td>
<td>180</td>
</tr>
<tr>
<td>30</td>
<td>170</td>
</tr>
<tr>
<td>33</td>
<td>150</td>
</tr>
</tbody>
</table>
CREDITS

Aircraft modelling and design – Commercial Level Simulations
Project Management – Alex Ford, Martyn Northall
Manual – Martyn Northall
Installer – Richard Slater
Sales – James, Harley and Jamie
Production Management – Andy Payne, Dermot Stapleton
Design – Fink Creative
Manufacturing – The Producers
Support – Martyn Northall, George Bland, John Welch

Special thanks to Matthias Lieberecht

COPYRIGHT

©2013 Just Flight Limited. All rights reserved. Just Flight and the Just Flight logo are trademarks of Just Flight Limited, 2 Stonehill, Stukeley Meadows, Huntingdon, PE29 6ED, UK. All trademarks and brand names are trademarks or registered trademarks of the respective owners and their use herein does not imply any association or endorsement by any third party.
SOFTWARE PIRACY

This software is copy protected.

We at Just Flight have invested significant time, effort and money to develop, manufacture and publish all of our flight simulation products. This includes rewarding the programmers and artists whose creativity contributes so much to the products we all enjoy.

A pirate, otherwise known as a thief, makes a profit from the sale of other people’s hard work. In some cases he makes more profit than the publishers and developers make from the sale of an original title. Piracy is not just the domain of the casual domestic user in his or her back room, but it is also a multi-million pound business conducted by criminals often with associations with the illegal drugs trade. Buying or downloading pirated copies of programs directly support these illegal operations.

Don’t be fooled by a load of old tosh about file ‘sharing’. The sites that host these ‘shared’ files are multi-million dollar operations that cover their backsides with the excuse that they are simply a ‘gateway’ to the files. In fact, they actively encourage piracy and are often funded by advertising. Most of them are illegal money-laundering operations by another name.

The people who really suffer from game piracy are the artists, programmers and other committed game development staff. Piracy and theft directly affects people, and their families. Loss of revenue to the games industry through piracy means many are losing their jobs due to cut-backs that have to be made to ensure developers and publishers survive. The logical outcome of this is that eventually the supply of flight simulation programs will dry up because developers think it is not worth the hassle.

It’s not just copying software that is against the law, owning copied software also constitutes a criminal offence; so anyone buying or downloading from these people is also at risk of arrest and prosecution.

To find out more about the implications of piracy please click on the Piracy link on our website at justflight.com.